Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Viruses ; 15(5)2023 05 09.
Artigo em Inglês | MEDLINE | ID: covidwho-20237088

RESUMO

During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/metabolismo , Reposicionamento de Medicamentos/métodos
2.
Sci Data ; 10(1): 291, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2327037

RESUMO

The COVID-19 pandemic has highlighted the need for FAIR (Findable, Accessible, Interoperable, and Reusable) data more than any other scientific challenge to date. We developed a flexible, multi-level, domain-agnostic FAIRification framework, providing practical guidance to improve the FAIRness for both existing and future clinical and molecular datasets. We validated the framework in collaboration with several major public-private partnership projects, demonstrating and delivering improvements across all aspects of FAIR and across a variety of datasets and their contexts. We therefore managed to establish the reproducibility and far-reaching applicability of our approach to FAIRification tasks.


Assuntos
COVID-19 , Conjuntos de Dados como Assunto , Humanos , Pandemias , Parcerias Público-Privadas , Reprodutibilidade dos Testes
3.
Eur J Med Chem ; 244: 114853, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2301653

RESUMO

SARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (Mpro) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel α-ketoamides as covalent reversible inhibitors of Mpro, exploiting the PADAM oxidation route. The reported compounds showed µM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 Mpro. In order to assess inhibitors' binding mode, two co-crystal structures of SARS-CoV-2 Mpro in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of Mpro. Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS Mpro where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Proteases 3C de Coronavírus , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais , Cisteína Endopeptidases/metabolismo , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular
4.
Berg, Hannes, Wirtz Martin, Maria A.; Altincekic, Nadide, Islam, Alshamleh, Bains, Jasleen Kaur, Blechar, Julius, Ceylan, Betül, de Jesus, Vanessa, Karthikeyan, Dhamotharan, Fuks, Christin, Gande, Santosh L.; Hargittay, Bruno, Hohmann, Katharina F.; Hutchison, Marie T.; Korn, Sophie Marianne, Krishnathas, Robin, Kutz, Felicitas, Linhard, Verena, Matzel, Tobias, Meiser, Nathalie, Niesteruk, Anna, Pyper, Dennis J.; Schulte, Linda, Trucks, Sven, Azzaoui, Kamal, Blommers, Marcel J. J.; Gadiya, Yojana, Karki, Reagon, Zaliani, Andrea, Gribbon, Philip, Marcius da Silva, Almeida, Cristiane Dinis, Anobom, Bula, Anna L.; Bütikofer, Matthias, Caruso, Ícaro Putinhon, Felli, Isabella Caterina, Da Poian, Andrea T.; Gisele Cardoso de, Amorim, Fourkiotis, Nikolaos K.; Gallo, Angelo, Ghosh, Dhiman, Francisco, Gomes‐Neto, Gorbatyuk, Oksana, Hao, Bing, Kurauskas, Vilius, Lecoq, Lauriane, Li, Yunfeng, Nathane Cunha, Mebus‐Antunes, Mompeán, Miguel, Thais Cristtina, Neves‐Martins, Martí, Ninot‐Pedrosa, Pinheiro, Anderson S.; Pontoriero, Letizia, Pustovalova, Yulia, Riek, Roland, Robertson, Angus J.; Abi Saad, Marie Jose, Treviño, Miguel Á, Tsika, Aikaterini C.; Almeida, Fabio C. L.; Bax, Ad, Katherine, Henzler‐Wildman, Hoch, Jeffrey C.; Jaudzems, Kristaps, Laurents, Douglas V.; Orts, Julien, Pierattelli, Roberta, Spyroulias, Georgios A.; Elke, Duchardt‐Ferner, Ferner, Jan, Fürtig, Boris, Hengesbach, Martin, Löhr, Frank, Qureshi, Nusrat, Richter, Christian, Saxena, Krishna, Schlundt, Andreas, Sreeramulu, Sridhar, Wacker, Anna, Weigand, Julia E.; Julia, Wirmer‐Bartoschek, Wöhnert, Jens, Schwalbe, Harald.
Angewandte Chemie ; 134(46), 2022.
Artigo em Inglês | ProQuest Central | ID: covidwho-2103465

RESUMO

SARS‐CoV‐2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti‐virals. Within the international Covid19‐NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR‐detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure‐based drug design against the SCoV2 proteome.

5.
Angew Chem Int Ed Engl ; 61(46): e202205858, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2034712

RESUMO

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Ligantes , Desenho de Fármacos
6.
Sci Data ; 9(1): 405, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1931428

RESUMO

Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos
7.
ACS Pharmacol Transl Sci ; 5(4): 226-239, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1852382

RESUMO

SARS-CoV-2 infection is still spreading worldwide, and new antiviral therapies are an urgent need to complement the approved vaccine preparations. SARS-CoV-2 nps13 helicase is a validated drug target participating in the viral replication complex and possessing two associated activities: RNA unwinding and 5'-triphosphatase. In the search of SARS-CoV-2 direct antiviral agents, we established biochemical assays for both SARS-CoV-2 nps13-associated enzyme activities and screened both in silico and in vitro a small in-house library of natural compounds. Myricetin, quercetin, kaempferol, and flavanone were found to inhibit the SARS-CoV-2 nps13 unwinding activity at nanomolar concentrations, while licoflavone C was shown to block both SARS-CoV-2 nps13 activities at micromolar concentrations. Mode of action studies showed that all compounds are nsp13 noncompetitive inhibitors versus ATP, while computational studies suggested that they can bind both nucleotide and 5'-RNA nsp13 binding sites, with licoflavone C showing a unique pattern of interaction with nsp13 amino acid residues. Overall, we report for the first time natural flavonoids as selective inhibitors of SARS-CoV-2 nps13 helicase with low micromolar activity.

8.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1712991

RESUMO

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Assuntos
Barreira Hematoencefálica/virologia , Sistema Nervoso Central/virologia , SARS-CoV-2/fisiologia , Internalização do Vírus , Anticorpos/farmacologia , Benzamidinas/farmacologia , COVID-19/patologia , COVID-19/virologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Guanidinas/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos
9.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1625123

RESUMO

SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications-including ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs)-have the potential to upregulate ACE2, thereby possibly facilitating viral entry and increasing the severity of COVID-19. We investigated the influence of the NSAIDS with a range of cyclooxygenase (COX)1 and COX2 selectivity (ibuprofen, flurbiprofen, etoricoxib) and paracetamol on the level of ACE2 mRNA/protein expression and activity as well as their influence on SARS-CoV-2 infection levels in a Caco-2 cell model. We also analysed the ACE2 mRNA/protein levels and activity in lung, heart and aorta in ibuprofen treated mice. The drugs had no effect on ACE2 mRNA/protein expression and activity in the Caco-2 cell model. There was no up-regulation of ACE2 mRNA/protein expression and activity in lung, heart and aorta tissue in ibuprofen-treated mice in comparison to untreated mice. Viral load was significantly reduced by both flurbiprofen and ibuprofen at high concentrations. Ibuprofen, flurbiprofen, etoricoxib and paracetamol demonstrated no effects on ACE2 expression or activity in vitro or in vivo. Higher concentrations of ibuprofen and flurbiprofen reduced SARS-CoV-2 replication in vitro.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anti-Inflamatórios não Esteroides/farmacologia , COVID-19/genética , Acetaminofen/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/patologia , Células CACO-2 , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Etoricoxib/farmacologia , Flurbiprofeno/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Ibuprofeno/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos
10.
Life (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1399330

RESUMO

Blood-pressure-lowering drugs are proposed to foster SARS-CoV-2 infection by pharmacological upregulation of angiotensin-converting enzyme 2 (ACE2), the binding partner of the virus spike (S) protein, located on the surface of the host cells. Conversely, it is postulated that angiotensin-renin system antagonists may prevent lung damage caused by SARS-CoV-2 infection, by reducing angiotensin II levels, which can induce permeability of lung endothelial barrier via its interaction with the AT1 receptor (AT1R). METHODS: We have investigated the influence of the ACE inhibitors (lisinopril, captopril) and the AT1 antagonists (telmisartan, olmesartan) on the level of ACE2 mRNA and protein expression as well as their influence on the cytopathic effect of SARS-CoV-2 and on the cell barrier integrity in a Caco-2 cell model. RESULTS: The drugs revealed no effect on ACE2 mRNA and protein expression. ACE inhibitors and AT1R antagonist olmesartan did not influence the infection rate of SARS-CoV-2 and were unable to prevent the SARS-CoV-2-induced cell barrier disturbance. A concentration of 25 µg/mL telmisartan significantly reduced the virus replication rate. CONCLUSION: ACE inhibitors and AT1R antagonist showed neither beneficial nor detrimental effects on SARS-CoV-2-infection and cell barrier integrity in vitro at pharmacologically relevant concentrations.

11.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1393161

RESUMO

Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials and protocols. We report here the launching of Minimal Information for Chemosensitivity Assays (MICHA), accessed via https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools, MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds, 2) samples, 3) reagents and 4) data processing methods. For example, MICHA provides an integrative web server and database to obtain compound annotation including chemical structures, targets and disease indications. In addition, the annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle (Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide FAIRified protocols from five major cancer drug screening studies as well as six recently conducted COVID-19 studies. With the MICHA web server and database, we envisage a wider adoption of a community-driven effort to improve the open access of drug sensitivity assays.

12.
ACS Pharmacol Transl Sci ; 4(3): 1096-1110, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1313542

RESUMO

Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 µM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.

13.
ACS Pharmacol Transl Sci ; 4(3): 1079-1095, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1185367

RESUMO

The SARS-CoV-2 coronavirus outbreak continues to spread at a rapid rate worldwide. The main protease (Mpro) is an attractive target for anti-COVID-19 agents. Unexpected difficulties have been encountered in the design of specific inhibitors. Here, by analyzing an ensemble of ∼30 000 SARS-CoV-2 Mpro conformations from crystallographic studies and molecular simulations, we show that small structural variations in the binding site dramatically impact ligand binding properties. Hence, traditional druggability indices fail to adequately discriminate between highly and poorly druggable conformations of the binding site. By performing ∼200 virtual screenings of compound libraries on selected protein structures, we redefine the protein's druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding. This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore. The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2 Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen protein targets with malleable binding sites.

14.
Sci Data ; 8(1): 70, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1104525

RESUMO

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic, in which acute respiratory infections are associated with high socio-economic burden. We applied high-content screening to a well-defined collection of 5632 compounds including 3488 that have undergone previous clinical investigations across 600 indications. The compounds were screened by microscopy for their ability to inhibit SARS-CoV-2 cytopathicity in the human epithelial colorectal adenocarcinoma cell line, Caco-2. The primary screen identified 258 hits that inhibited cytopathicity by more than 75%, most of which were not previously known to be active against SARS-CoV-2 in vitro. These compounds were tested in an eight-point dose response screen using the same image-based cytopathicity readout. For the 67 most active molecules, cytotoxicity data were generated to confirm activity against SARS-CoV-2. We verified the ability of known inhibitors camostat, nafamostat, lopinavir, mefloquine, papaverine and cetylpyridinium to reduce the cytopathic effects of SARS-CoV-2, providing confidence in the validity of the assay. The high-content screening data are suitable for reanalysis across numerous drug classes and indications and may yield additional insights into SARS-CoV-2 mechanisms and potential therapeutic strategies.


Assuntos
Antivirais/farmacologia , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Benzamidinas , COVID-19 , Células CACO-2 , Cetilpiridínio , Avaliação Pré-Clínica de Medicamentos , Ésteres , Guanidinas , Humanos , Lopinavir , Mefloquina , Papaverina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA